A new procedure to identify linear and quadratic regression models based on signal-to-noise-ratio indicators
نویسندگان
چکیده
A new regression procedure is developed for identification of linear and quadratic models. The new procedure uses indicators based on the signal-to-noise ratio, as well as more traditional indicators, to validate the models. Various traditional stages in the modeling process, like stepwise regression, outlier detection and removal and variable transformations, are pursued, however the interdependence between these stages is accounted for to ensure detection of the best model (or subset of models). Three examples are presented, where the proposed procedure is implemented. Some of the models identified have better goodness-of-fit than those reported in the literature. Furthermore, for two of the examples, complex quadratic models were identified that in fact model also the stochastic experimental error. While traditional indicators failed to signal the invalidity of these models, signal-to-noise ratio indicators, based on realistic noise estimates detected such over-fitting. c © 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Generalized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملModifying PIARC’s Linear Model of Accident Severity Index to Identify Roads' Accident Prone Spots to Rehabilitate Pavements Considering Nonlinear Effects of the Traffic Volume
Pavement rehabilitation could affect the accident severity index (ASI) since restoration measures means more safety for road users. No research or project has been carried out to identify hazard points to build a linear model based on crash severity index. One of the very popular accident severity index models used in all countries is based on linear models to rehabilitate pavements and this pa...
متن کاملTDL-based Wideband Beamforming for Radio Sources Close to the Array Endfire
Uniform linear array (ULA)-based tapped-delay line (TDL) structure has good performance metrics when the signal sources are located at the middle angles. It offers poor performance when the signal sources are close to the array endfire. In this paper, a new approach is proposed which offers higher performance and desired beamforming on TDL structure when the wideband uncorrelated radio sources ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematical and Computer Modelling
دوره 46 شماره
صفحات -
تاریخ انتشار 2007